PREVISÃO DE VAZÃO DA BACIA DO RIBEIRO JOÃO LEITE UTILIZANDO REDES NEURAIS ARTIFICIAIS
DOI:
https://doi.org/10.15809/irriga.2011v16n3p339Resumo
1 RESUMO
A manutenção da água, recurso finito em padrões de quantidade e qualidade, representa um desafio para a sociedade e exige estudo sobre conservação, manutenção, escoamento e tratamento. O modelo de previsão de vazão e o modelo de transformação precipitação-vazão desenvolvidos neste trabalho para a bacia do Ribeirão João Leite, em Goiás, utilizaram Redes Neurais Artificiais (RNA) com múltiplas camadas e treinamento pelo algoritmo de Levenberg-Marquardt. Elaborou-se a entrada da RNA a partir das séries históricas dos dados diários de precipitação e vazão observadas nos postos pluviométricos e fluviométricos existentes ao longo da bacia em um período de seis anos, de 1991 a 1997. Os dados foram pré-processados para correção de casos de inconsistência ou inexistência e o cálculo da precipitação média diária foi realizado pelo método de Thiessen. O uso do algoritmo de Levenberg-Marquardt possibilitou explorar diversas combinações de parâmetros de configuração para escolha do melhor modelo, com melhores resultados que os modelos conceituais existentes.
Palavras-chave: precipitação, modelagem, algoritmo, redes neurais artificiais.
FERREIRA, J. C.; PAIS, M. S.; YAMANAKA, K.; CARRIJO, G. A.; TEIXEIRA, M. B.; SILVA, R. T. da; RABELO, C. G.
INFLOW FORECASTING OF THE JOAO LEITE RIVER BASIN USING ARTIFICIAL NEURAL NETWORK
2 ABSTRACT
This paper provides a model that represents the behavior of the hydrological basin of the João Leite river, in Goiás, helping managers of water resources in their decision-making. The presented inflow forecasting model and rainfall-runoff model use Artificial Neural Networks (ANN) with multiple layers and the Levenberg-Marquardt learning algorithm. The input is the time series data of observed daily precipitation and observed daily inflows measured by stations along of the Joao Leite basin, in a period of six years, from 1991 to 1997. The data were pre-processed to correct cases of inconsistency or missing information, and the computation of the average daily precipitation was performed by the Thiessen method. The Levenberg-Marquardt training algorithm allowed exploring different combinations of configuration parameters for selecting the best model. The results obtained by the presented model show the feasibility of using ANNs in the modeling of river basins and better results than the conceptual models.
Keywords: precipitation, modeling, algorithm, artificial neural networks.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Esta revista proporciona acesso público a todo seu conteúdo, seguindo o princípio que tornar gratuito o acesso a pesquisas gera um maior intercâmbio global de conhecimento. Tal acesso está associado a um crescimento da leitura e citação do trabalho de um autor. Os direitos autorais dos artigos publicados na Revista Irriga são de propriedade dos autores, com direitos de primeira publicação para o periódico. Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, para fins educacionais e não-comerciais. Maiores detalhes podem ser obtidos em http://creativecommons.org/licenses/by-nc-nd/4.0