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ABSTRACT: The spatial representation of soil texture and crop yield allows the formulation of
solid and efficient management strategies. Thus, this study aimed to evaluate the spatial variability
of soybean/corn yield and soil texture in the generation of management zones. The study was
carried out in an area of 130 ha with summer soybean and off-season corn succession. A sample
grid was generated with 64 points in a regular grid and 13 random points, totaling 77 points, one for
every 1.7 ha. Soil sample collection was performed manually, and soybean (2017/2018 and
2018/2019) and corn (2018 and 2019) yield data were collected from the harvester’s yield monitor.
Texture and yield data were subjected to descriptive statistics and spatialization. Soybean and corn
yield variabilities were influenced by soil texture and climate. Corn and soybean yields presented
higher values in regions with more clay under water deficit conditions, whereas soybean yield was
higher in regions with more sand under normal conditions. Management zones can be made from
this isolated attribute in areas with differing clay content.

Keywords: precision agriculture, harvest maps, particle size.

VARIABILIDADE DA PRODUTIVIDADE DE SOJA E MILHO E DA TEXTURA DO
SOLO NA GERAÇÃO DE ZONA DE MANEJO

RESUMO: A representação espacial da textura do solo e produtividade das culturas permitem
formular estratégias de manejo sólidas e eficientes. Assim, objetivou-se avaliar a variabilidade
espacial da produtividade de soja/milho e a textura do solo na geração de zonas de manejo. O
trabalho foi realizado em área de 130 ha com sucessão soja verão e milho safrinha. Foi gerado grade
amostral, com 64 pontos em malha regular e mais 13 pontos aleatórios, totalizando 77 pontos, um a
cada 1,7 ha. A coleta das amostras de solo foi realizada de forma manual e os dados de
produtividade de soja (2017/2018 e 2018/2019) e milho (2018 e 2019) foram coletados do monitor
de produtividade da colhedora. Os dados de textura e produtividade foram submetidos à estatística
descritiva e a espacialização. A variabilidade das produtividades de soja e de milho foi influenciada
pela textura do solo e pelo clima. Em condições de déficit hídrico, as produtividades de milho e soja
apresentaram maiores valores nas regiões com mais argila, já quando condições normais a
produtividade de soja foi maior nas regiões com mais areia. Em áreas com teor de argila
discrepantes podem ser feitas zonas de manejo a partir desse atributo isolado.
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1 INTRODUCTION

With increase in the world population,
there is also a great demand for food. The
current agriculture to seeks to innovate in
machines and technologies that allow using
resources rationally. What promotes increase
in food production, in a sustainable way, wtih
the use of agricultural inputs at varying rates.

The concept of Precision Agriculture
(PA) is associated with the use of new
technologies that allow for the management of
spatial and temporal variability, maximizing
profit and minimizing environmental damage,
and having greater control over the causes of
variation associated with higher amounts of
information (TSCHIEDEL; FERREIRA,
2002). According to Cortez et al. (2018a) and
Cortez et al. (2018b), the special variability
observed by geostatistical methods allows
defining specific regions in an area, which
enable or require specific local management.
Buss et al. (2019) suggest that PA
implementation requires prior knowledge
about the spatial variability of crops, soil
attributes, and the generation of management
zones.

The concept of PA uses variable rate
application, spatial variability of yield, and
other factors (CAMICIA et al., 2018). In the
PA context, yield maps describe the spatial
variability of the study area and depend on the
sampling arrangement and density (GUEDES
et al., 2016).

Among the factors considered in the
adoption of PA techniques, the spatial of soil
texture from the asjustment of models that
describe the spatial dependence, has been the
subject of numerous studies in the
determination of soil physical and chemical
soil attributes in usampled locations
(OLIVEIRA et al., 2015). However, there are
still few studies on the relationship between

the variability of these characteristics and crop
yield.

Management Zones (MZ) are included
in the larger context of PA. For Molin, Amaral
e Colaço et al. (2015) as management zones or
differentiated management unit (UGDs) can be
defined as regions that contain minimal spatial
variability and temporal consistency and that
describe the response potential of the area.
According to Kuiawski et al. (2017), is an
economically viable option that can be
delineated using altitude and vegetation
indices, showing differences in management
zones regarding phosphorus, clay, and silt at
the end of the process.

In this context, the knowledge and
spatial representation of yield over the years
allow for the formulation of more solid and
efficient management strategies, such as the
division of the property into areas that present
higher homogeneity, creating differentiated
management units or management zones to
adopt the most adequate crop management for
each soil condition. Thus, this study aimed to
evaluate the spatial variability of soybean and
corn yield during two growing seasons
associated with soil texture in the generation
of management zones.

2 MATERIAL AND METHODS

The study was carried out on a
commercial farm with approximately 130 ha,
located in the municipality of Ponta Porã, MS,
Brazil, which is located at latitude 22°22′58″
S, longitude 55°10′30″ W, and an average
altitude of 440 m (Figure 1). The climate is
humid tropical with a dry winter. The property
is cultivated in the rainfed system and adopts
the no-tillage system in straw with a soybean
and off-season corn succession for
approximately 20 years.
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Figure 1. Altitude data of the experimental area

Source: Author (2020).

The soil in the area is classified as a
medium-textured Oxisol (Latossolo Vermelho
distrófico, Brazilian Soil Classification
System), with a gently wavy relief (SANTOS
et al., 2018) and means of 343, 84, and 573 g

kg−1 of clay, silt, and total sand, respectively.
Table 1 shows the chemical attributes in the
0.0–0.20 m layer with their mean values in the
area.

Table 1. Mean contents of chemical attributes at a depth of 0.00–0.20 m.
Chemical attributes

pH 5.77
OM g dm-3 36.00

P mg dm-3 12.30
Ca2+

cmolc dm-3

5.09
Mg2+ 1.17
K+ 0.18
SB 6.44
Al3+ 0

Al3++H+ 2.08
CEC 8.52

m

%

0
Ca 59.74
Mg 13.73
K 2.11
V 75.59

Cation exchange capacity at pH 7.0 (CEC), sum of bases (SB), base saturation (V), aluminum saturation (m), and mean
calcium (Ca), magnesium (Mg), and potassium saturation (K) relative to the total CEC. Source: Author (2020).

The meteorological data of maximum
and minimum temperature (Figure 2) were
collected at the weather station of Embrapa

Western Agriculture, Dourados, MS, Brazil,
while the precipitation data (Figure 2) were
collected in the study area.
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Figure 2. Monthly meteorological data for 2017, 2018, and 2019, with volumes accumulated in the
period of soybean and corn cultivation

Source: Author (2020) and Embrapa Western Agriculture (2020).

A sampling grid with 64 points
distributed regularly, with one point every 2.0
ha (143.61 × 143.61 m) plus 13 sampling
points (the equivalent of approximately 20%
of the points from the original sampling grid),
randomly allocated according to the spatial
variability of the observed yield in the corn
and soybean harvest maps for 2018 and 2019,
was generated for the collection of soil data
(Figure 2). Therefore, the adopted sampling

grid had 77 sampling points at the density of
one sample per 1.7 ha. Baio et al. (2021) used
10% additional points in the grid at a distance
smaller than the sampling grid to improve the
estimation of the semivariogram on the
microscale. Molin, Amaral e Colaço et al.
(2015) suggested the use of 30% additional
points in the sampling grid. Therefore, we
decided to use 20% of the additional points in
this study.

Figure 3. Regular grid with original and additional sampling points for collecting soil samples

Source: Author (2020).

Soil samples were collected manually
in 2019. To remove the soil was used a Stihl®

BT 45 gasoline drill with an Irwin® Mathieson

1 ½″ x 18 mm. The composite samples were
collected at a depth of 0.00–0.20 m, with 10
subsamples within a radius of 5 m from the



Schwambach et al./ Variability of soybean.../v36n3p335-347 (2021) 339

sampling point to be characterized.
Yield data were collected over two

years by harvesters equipped with an impact
plate mass sensor, monitor, and GNSS receiver
capable of collecting data every 1 second. The
data obtained the mapping system were
filtered using an electronic spreadsheet to
eliminate discrepant data (outliers). The
criteria adopted for data elimination were as
follows: data containing positioning error
and/or null geographic coordinates, data with
zero grain mass moisture, data collected with a
minimum working width of the platform less
than 95% of the working width for soybean
and 75% for corn for the 2018 growing season
and 100% for the 2019 corn growing season
(adapted from MENEGATTI; MOLIN, 2004).
Considering as the yield data mass is large
generated by the mapping system, the values
identified as outliers were removed.

Soil texture and crop yield data were
subjected to descriptive statistics. The Ryan-
Joiner test at the 5% probability was used to
verify the fit of the normal distribution.

The geostatistical analysis of the soil
texture data was performed using experimental
semivariograms (exponential, gaussian or
spherical) and the model adjustment was
performed based on the lowest sum of squared
residuals (SSR) and the best coefficient of
determination (r2). The following parameters
were defined: nugget effect (Co), contribution
(C), sill (Co+C), and range (a). Data were
cross-validated to validate the model. The
spatial dependence index (SDI) was calculated
by the equation SDI=[C0/(C0+C1)]*100. The
degree of spatial dependence (DSD) was
classified based on SDI as strong, for SDI ≤
25%; moderate, for SDI between 25 and 75%;
and weak, for SDI > 75% (CAMBARDELLA

et al., 1994). All texture data were estimated
scaled to a 10 m spatial resolution and
interpolated by ordinary kriging with QGIS
software.

The yield data were subjected to
interpolation by the inverse distance weighting
(IDW) using the value 2 as a weight, after they
had gone through the cleaning process. All
data the yields were estimated to a 10 m
spatial resolution with QGIS software. The
yields values were classified and grouped into
five classes.

The management zones were generated
after analyzing the data collected annually and
temporally, being classified as a function of
the clay content according to Santos et al.
(2018), in which: medium texture, with
material with clay content between 150 and
350 g kg−1; clayey texture, material with clay
content between 350 and 600 g kg−1; and very
clayey texture, material with clay content
higher than 600 g kg−1.

3 RESULTS AND DISCUSSION

3.1 Granulometry analysis

The spatial variability for soil
granulometry attributes (Table 2) has a high
range. For clay the values were with minimum
of 180.40 g kg−1 and maximum values of
580.40 g kg−1, showing the variability of this
attribute. However, marked variations were
observed for silt and sand. The relative
dispersion of the coefficient of variation (CV)
data for the analyzed attributes was higher for
silt despite being classified as medium (CV
between 15 and 60%), according to Warrick
and Nielsen (1980).
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Table 2. Descriptive statistics of soil particle size at a depth of 0.0–0.2 m at the study area in Ponta
Porã, MS, Brazil.

Parameter Clay Silt Sand

------------ g kg−1 ------------
Mean/plot 343.50 84.61 572.70
SD 94.80 45.37 115.20
Variance 8984.70 2058.12 13281.80
Minimum 180.40 19.80 277.00
Maximum 580.40 309.60 750.00
Range 400.00 289.80 473.00
CV 27.61 53.62 20.12
Sk 0.48 2.82 −0.31
K −0.36 12.23 −0.46
RJ 0.99ns 0.86* 0.99ns

SD: standard deviation; CV (%): coefficient of variation; Sk: skewness; K: kurtosis; RJ: Ryan-Joiner test, where (*)
significant at levels of p < 0.05 and (ns) non-significant distribution. The hypothesis for normal distribution is rejected
when it is significant. Source: Author (2020).

The attribute silt did not follow a
normal frequency distribution (Table 2), which
was confirmed by the skewness coefficient
shifted to the right (Sk > 0) and kurtosis with a
leptokurtic distribution (Ck > 0), confirmed by
the Ryan-Joiner test (RJ). However, the
attributes clay and total sand presented values
close to zero for the skewness and kurtosis
coefficients so that the frequency distribution
tends to normality, which can be verified by
the result of the RJ test.

A strong spatial dependence was
observed for the attributes sand, clay, and silt
(Table 3), with an exponential semivariogram
model more suitable for the three fractions.
The cross-validation test showed that all
estimators have a regression coefficient close

to 1.0, measuring the reliability of the adopted
models.

Range (A) values (Table 3) showed
that the use of a regular grid (original grid)
with a density of one sampling point for every
2.06 hectares, associated with random points
(additional points) at a density of 20% of the
regular grid, allocated according to soybean
and second crop corn yield variability for a
period of two years, was efficient to identify
the spatial dependence of soil texture attributes
in the study area, all of which were classified
as strong. Molin, Amaral e Colaço et al.
(2015) state that adding points to the regular
grid improves the quality of investigation and
analysis of spatial dependence.

Table 3. Parameters for the semivariogram adjustment regarding soil texture.
Attribute Model Co Co+C A (m) SSR SDI DSD r2

Clay Exponential 10.00 11.050.00 621.00 7.69 0.09 Strong 0.93
Silt Exponential 118.00 2.389.00 300.00 2.73 4.94 Strong 0.52

Total
sand

Exponential 10.00 17.990.00 606.00 1.74 0.06 Strong 0.94

Co: nugget effect; Co+C: sill; A: range; SSR: sum of squared residuals; SDI: spatial dependence index; DSD: degree of
spatial dependence; r2: determination coefficient. Source: Author (2020).
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Clay, silt, and total sand spatialization
(Figure 4) indicate high variability in the area.
Moreover, the behavior of clay and sand are
antagonistic, that is, regions where clay
contents were higher (441 to 518 g kg−1) had

lower sand contents (315 to 396 g kg−1). This
fact was already expected and also confirmed
by Lima et al. (2014) who found an inverse
spatial distribution of the clay and total sand
fractions.

Figure 4. Variability maps of clay (A), silt (B), and total sand (C) contents

Source: Author (2020).

Soil texture characteristics may vary
due to the relief, which can affect crop yield.
Thus, clay content decreases as altitude
decreases (Figure 1). Kuiawski et al. (2017)
stated that there are several associations of the
soil-plant-atmosphere relationship that affect
yield and the terrain altimetry associated with
vegetation indices shows greater agreement
with the yield zones of the soybean crop.
Cortez, Anghinoni e Arcoverde et al. (2020)
observed that one of the factors that affect
yield is soil compaction and machinery traffic.

3.2 Grain yield

Soybean and corn yield data (Table 4)
showed high variability, indicated by the data
range. The relative dispersion of the data,
according to Warrick and Nielsen (1980), was
classified as low (CV lower than 15%) for the
soybean and medium (CV between 15 and
60%) for corn in both growing seasons.
Skewness values were negative and kurtosis
values were close to three for the two soybean
and corn growing seasons, characterizing the
non-normal distribution of data, attested by the
RJ normality test (Table 4).
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Table 4. Descriptive statistics of soybean (2017/2018 and 2018/2019) and corn (2018 and 2019)
yield at the study area in Ponta Porã, MS, Brazil.

Parameter
Soybean Corn

2017/18 2018/19 2018 2019
--------------------- kg ha−1 --------------------

Mean/plot 4,013.10 3,458.01 2,823.70 5,085.57
SD 428.98 319.33 800.37 912.02
Variance 183920.71 101972.95 640585.00 831784.64
Minimum 2,506.30 2,428.00 351.10 2,103.00
Maximum 5,517.60 4,486.00 5,289.60 8,019.30
Range 3,011.30 2,058.00 4,938.50 5,916.30
CV 10.69 9.23 28.34 17.93
Sk −0.14 −0.30 −0.55 −0.40
K 3.87 3.43 3.36 3.60
RJ 1.00* 1.00* 0.99* 0.99*

SD: standard deviation; CV (%): coefficient of variation; Sk: skewness; K: kurtosis; RJ: Ryan-Joiner test, where (*)
significant at levels of p < 0.05 and (ns) non-significant distribution. The hypothesis for normal distribution is rejected
when it is significant. Source: Author (2020).

The higher ranges observed in both
growing seasons for corn yield showed the
“elasticity” of C4 plants relative to C3 plants
when compared to the range of soybean yield
data. According to Santi et al. (2013), this
behavior is due to the higher productive
potential of corn compared to other crops, such
as soybean.

The yield achieved in the 2019 corn
growing season was higher than in 2018
(Table 4). It can be explained by the climate
conditions (Figure 2). Because as the
accumulated rainfall in the region during the
crop cycle (from sowing to harvest) was 585
mm in 2019, a volume 29.4% higher for the
period compared to 2018.

Soybean yield variation in the study
area (Figure 5) indicates an antagonistic
behavior in regions of high and low yield in
the 2017/2018 and 2018/2019 growing
seasons, associated with the rainfall regime
and clay contents. Rainfall volume and
distribution in both growing seasons (Figure
2), 558 and 486 mm, respectively, during the
phenological stages R1 to R7, the time of
highest water demand, associated with clay
and sand contents (Figure 4), justify this
behavior. The occurrence of deficits during the
reproductive phase of the soybean crop leads
to a higher reduction in yield (Nunes et al.,
2016).

Figure 5. Soybean yield map for the 2017/2018 (A) and 2018/2019 (B) growing seasons

Source: Author (2020).
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Proper management allows obtaining
best soybean yields in sandy soils in the
Cerrado region, which is in line with the yield
found in the 2017/2018 growing season
(Figure 5A). Soybean yield for the 2018/2019
growing season (Figure 5B) reflects the
regional climate instability effects, with a
lower yield in the area with the highest amount
of sand. Buss et al. (2019) studying a spatial
variability of soybean yield and soil physical
attributes, observed that soybean yield was
inversely related to coarse and fine sand
content in the 0-0.20 m layer.

The 2018 second crop corn yield map
failed in the process of recording it on a flash
drive by the harvester at the harvest time
(Figure 6A). This failure proved to be
irreversible, leaving part of the field without
information. Corn yield (Figure 6) showed
similar behavior to soybean yield (Figure 5).
The red regions in the corn harvest map
represent lower yields, corroborating with
regions with the lowest amount of clay in the
soil. This behavior can be explained by the soil
water storage capacity. Soils with more clay
influence water retention in the soil
(CARDUCCI et al., 2011).

Figure 6. Corn yield map second crop for the 2018 (A) and 2019 (B)

Source: Author (2020).

Precipitation volume (Figure 2)
accumulated in the 2018 growing season
throughout the corn cycle (from sowing to
harvest) in the region was 133 mm lower (452
mm – 585 mm) compared to the 2019 growing
season. The occurrence of two droughts, the
first in the period from 04/04 to 11/05 (lasting
37 days) and the second from 06/06 to 08/02
(57 days), coinciding with the beginning of the
definition of the productive potential,
flowering, and grain filling, affected the corn
crop development and yield. Caetano and
Casaroli (2017) observed that water deficit
causes a reduction in sugarcane yield. Souza et
al. (2020) found that the water deficit imposed
on the cowpea crop favored a lower yield.
Rocha et al. (2021) found that the
characteristics of corn most affected by water
deficit were male flowering, plant and ear

height and yield. This fact justified the
behavior of the low yield region, located in the
plot where the soil has the highest total sand
content (Figure 4), that is, the soil with higher
macroporosity and possibly less water
retention capacity.

In general, the regions with the highest
corn yields are located in areas with the
highest clay content. On the other hand, the
highest soybean yield depends on the water
regime, associated with soil clay content.
However, Corassa et al. (2018) found that a
low crop yield is associated with high clay
content in Oxisols under no-tillage systems in
the Rio Grande do Sul region and that organic
matter was the indicator of high yields. Thus,
the literature presents contradictory results
regarding the reasons that affect high yields,
requiring further research on the subject.
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3.3 Management zones

One of the simplest ways to make
management zones (MZ) is through the
spatialization of clay, using the classification
proposed by Santos et al. (2018), which
allowed us to simplify the spatial variability

(Figure 7). In this sense, medium clay (150 to
350 g kg−1) and clayey regions (350 to
600 g kg−1) were distinguished in the area and
the yield maps (Figures 5 and 6) correlate and
express the responses as a function of years
with or without rainfall.

Figure 7. Map of management zones considering the clay content in the plot, representing the
medium (yellow) and clayey textures (green)

Source: Author (2020).

The use of clay as a delimiter of
management zones was efficient in plots that
showed marked variations in clay content
(spatial variation), in which the effect of this
granulometry variation can be observed in the
yield maps throughout the growing seasons
(temporal variation). Leal et al. (2015) state
that clay is one of the effective estimators in
estimating second crop corn yield when using
neural networks as techniques. Therefore, clay
content becomes a reliable component to
define management zones.

Comparing the maps of corn
productivity with the map of management
zones, it can be seen that the regions with the
highest productivity are related to the MZ with
the highest clay content. For soybean yield,
this behavior was not observed. Considering
the use of the MZ map as a management tool
to be adopted in the corn and soybean crop,
some decisions could be based on the spatial
distribution of the clay content of the area,
including the establishment of cover plants

(aiming to increase of organic matter and
consequently of cation exchange capacity in
the more sandy regions) and also the plant
population to be sown in each MZ. According
to Vian et al. (2016), in a study of the spatial
variability of corn yield, state that obtaining
high grain yields is conditioned by the final
plant population, with uniform spatial
distribution of plants in the area.

4 CONCLUSIONS

The attributes clay, silt, and total sand
have strong spatial dependence and one point
every two hectares, added to 20% of random
points, are efficient for identifying spatial
dependence.

The spatial variability of soybean and
corn yields is influenced by soil texture.

Corn and soybean yield under water
deficit conditions showed higher values in
regions with higher clay content. On the
contrary, soybean yield without water deficit
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was higher in regions with more sand. Areas with contrasting clay content
values allow the generation of management
zones using this attribute.
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